Linear differential algebraic equations with constant coefficients
نویسندگان
چکیده
منابع مشابه
Linear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملLinear Stochastic Differential-algebraic Equations with Constant Coefficients
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue mea...
متن کاملOn systems of linear fractional differential equations with constant coefficients
This paper deals with the study of linear systems of fractional differential equations such as the following system: 0096-3 doi:10 * Co E-m Y ða 1⁄4 AðxÞY þ BðxÞ; ð1Þ where Y ða is the Riemann–Liouville or the Caputo fractional derivative of order a (0 < a 5 1), and AðxÞ 1⁄4 a11ðxÞ a1nðxÞ . . . . . . . . . an1ðxÞ annðxÞ 0BBBBBB@ 1CCCCCCA; BðxÞ 1⁄4 b1ðxÞ . . . . . . . . . bnðxÞ 0BBBBBB@ 1CCCCCCA...
متن کاملSolving the liner quadratic differential equations with constant coefficients using Taylor series with step size h
In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.
متن کاملLinear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Daffodil International University Journal of Science and Technology
سال: 1970
ISSN: 2408-8498,1818-5878
DOI: 10.3329/diujst.v4i2.4365